Greenhouse Gas Emissionsand Lower-Carbon Fuels

December 1, 2004

California Environmental Protection Agency

Agenda

- Background
- → Summary of Board action on regulations to control greenhouse gas emissions (GHG) from motor vehicles.
 - AB 1493
 - Board action on Sep 24. 2004
- Potential use of bio fuels in CA
 - Ethanol
 - Blends (E6, E10)
 - E85
 - Biodiesel
 - Others
- Approaches to encourage the use of low carbon fuels in CA
 - Regulatory
 - Incentives

Need for GHG Emissions Reductions

- Climate change indicators in California (snow melting in Sierra, water runoff decrease, sea level rise, heat wave frequency increase...)
- → Total GHG increase since 1990 by about 5.5%
- → Air temperature increase by 2-10° F predicted in 100 years.
- → 31% GHG and 58% CO₂ produced in CA come from transportation sector in 1999

California Motor Vehicle Regulations

- Longstanding California programs to control motor vehicle emission
- Low Emission Vehicle Program (LEV II) highly successful in controlling smogforming emissions.
- Now being expanded to include regulation of greenhouse gases

CO₂ Emissions by Fossil Fuel Type 1999

Source: Greenhouse Gas Inventory, CA Energy Commission 2001

1999 California Greenhouse Gas Emissions

Sources:

- Carbon Dioxide (CO₂): Fossil fuel combustion
- Methane: Fossil Fuels, Landfills, agriculture
- Nitrous Oxide: Agriculture, cars
- Hydrofluorocarbons: Refrigerants, solvents

Source: Greenhouse Gas Inventory
Update, California Energy
Commission, 2001

Assembly Bill 1493 Requirements

- Adopt regulations by January 1, 2005: achieve the maximum feasible and cost-effective reduction of GHG emissions from motor vehicles.
- Consider economic impacts, including impacts on jobs, businesses, and California business competitiveness with other states.
- Provide automobile manufacturers maximum flexibility.
- Allow opportunity for legislative oversight.

Regulations Must Provide ...

- **→** Maximum flexibility
- Credit for early automaker action
- Alternative means of Compliance
- "Economical to an owner of a vehicle, taking into account the full life-cycle costs of a vehicle" (AB 1493)

Board Action on September 24, 2004

- Approved regulation that requires automakers to begin selling vehicles with reduced greenhouse gases by model year 2009.
- → The regulation includes near-term standards, phased in from 2009 through 2012, and midterm standards, phased in from 2013 through 2016.
- Credit for the use of fuels that produce lower GHG emissions in vehicles covered in the program.

Benefits and Impacts

- Emissions: reduce GHG from the light duty fleet by
 - 18% in 2020
 - 27% in 2030
- Compliance cost: average vehicle price increases by
 - \$200-\$300 in model year 2012
 - \$1000-\$1050 in 2016.
- → Net savings to average consumer of \$3 to \$7 per month for most stringent (2016) standards.
- Lifetime ownership cost of owning vehicles reduced by
 - \$1,916 in 2012 to \$1,882 in 2016

Definition of Lower-Carbon Fuel

"Fuels that result in reduction in Carbon Emissions when consider life cycle emissions."

Current Use of lower-carbon fuels in CA

♦ Gasoline:

95%+ CaRFG3 with 5.7% vol. ethanol or about
900 millions gal per year in 2004.

→ Diesel:

 Biodiesel: 18.5 mil gallons B100 sold in 2003 (0.7% total diesel consumption)

Current Capacity of Producing lower-carbon fuels in CA

- → Gasoline:
 - Ethanol: < 10 millions gal/yr
- → Diesel:
 - Biodiesel: 7 8.5 millions gallons/year currently, up to 40 millions gallons/year in 2 years

Tax Credits

- Ethanol Gasoline
 - Federal tax subsidy: For E6: 3 c/gal
 - For E10: 5.2 c/gal

♦ Biodiesel

Recently enacted legislation:

- 1 cent per percent of blended agricultureproduct biodiesel (i.e., 20 c/gal for B20).
- 0.5 cent per percent of blended recycled-oil biodiesel (i.e., 10 c/gal for B20).

Ethanol Gasoline

Benefits:

- Emissions: going from 5.7% to 10% corn-based ethanol gasoline, about 1.2% GHG reduction.
- Adequate supply from Mid-west.
- Cellulosic ethanol would help solve CA waste disposal issue.
- GHG Reductions per Vehicle Mile, for using E10*:
 - Corn-ethanol: 2%
 - Cellulosic ethanol: 6-9%

^{*}Argonne National Laboratory, 1999

E6 and **E10**

- → 95% of gasoline in CA uses E5.7
- Potential use of E10 would increase Ethanol consumption from 900 million gallons to 1,600 million gallons*

^{*} Based on 2004 gasoline consumption.

E85

- Currently about 250,000 E85 vehicles in CA.
- Could consume up to 200 million gallons per year of E85
- → 3 fueling stations (1 for public, 2 for fleet use)
- Would avoid emissions impacts associated with E5.7 and E10.
- → Would need economic incentives.

Ethanol Issues

- Increase emission from permeation
- Energy content of E10 smaller than E5.7 results 1.5% gasoline more needed---> higher fuels costs.
- Inadequate ethanol supply in the state.
- Poor cost-effectiveness: \$700/ton for CO₂ reductions

Biodiesel

+ Emissions:

- 78% CO2 reduction based on life-cycle (Well-to-Wheel).
- 47% PM reduction.

Issues:

- 13-25 c/gal diesel price increases for B20
- higher NOx emissions.
- imported soybean biodiesel and inadequate supply of yellow grease for biodiesel feedstock.
- limited acceptance from automobile companies and engine manufacturers.

Potential Approaches

- → Traditional Regulatory Approach.
- "Trading Market" Regulatory System.
- Financial Incentives and/or Disincentives.

Traditional Regulation

- Set Carbon content or other Measure of GHG Potential for each fuel.
- Allow for Limited Averaging and Trading.
- Apply on Fuel by Fuel Basis.

Trading Market Regulatory Approach

- Set Overall Performance Standard for Vehicle Fuels.
- Establish where Credit Generation.
- Establish Market where Credits could be bought, sold and traded.

Incentive/Disincentive Approach

- → Develop Goals for Program.
- Establish System of Incentives to make preferred Financial Attractive.
- → Adjust over time to Achieve Desired Results.

Issues with All Approaches

- Limited Effect because must work in Existing Fleet.
- Cost Effectiveness.
- Impact on Emissions of Ozone and PM Precursors.
- Novelty and Complexities of Approaches.
- Adequacy of Current Legal Authorities.

Discussion